
Journal of  Stalislical Physics, Vol. 70, Nos. 1/2, 1993 

Models of the Temporal Dynamics 
of Visual Processing 

Ralph M. Siegel 1 and Heather L. Read 1 

Single unit recordings of neurons in primary visual cortex have demonstrated 
complex temporal patterns in the interspike interval return maps when presented 
with periodic input. Two models are tested to account for these patterns. An 
integrate-and-fire model is only able to replicate the in vivo data if its synaptic 
input is a chaotic function of time (such as a time series derived from the 
sinusoidally driven During equation). Simpler purely periodic inputs are 
insufficient to replicate the experimental data. A Hodgkin-Huxley ionic model 
with a periodic input can replicate some of the features of the neural data, 
however it seems to be lacking as a complete model. These results indicate that 
the in vivo dynamics are not a result of the intrinsic properties of the neuron, 
but arise from a chaotic input to the neuron. 

KEY WORDS: Cortex; vision; chaos theory; return maps; Poincar6 sections; 
integrate-and-fire; ionic model; During equation. 

1. I N T R O D U C T I O N  

Our understanding of visual information processing in the brain has been 
derived, to a large extent, from the study of single neuron activity patterns 
elicited with visual stimuli. By systematically altering the visual stimulus 
parameters (such as color, brightness, shape, and orientation), one can 
identify the features of a visual stimulus that elicit changes in the single 
neuron activity. Furthermore, one can explore the cortical distribution of 
neurons that respond to a common stimulus feature and begin to under- 
stand how visual stimuli are represented throughout a given population 
of visual sensory neurons. The measures of neural activity explored to 
date are primarily statistical (e.g., changes in the mean firing rate, 
autocorrelograms), although there have been some notable excep- 
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tions. (1'4'~3) Even though the standard approaches have been fruitful 
measures of stimulus-dependent changes in neural output, they tend to 
obscure some of the finer temporal patterns seen in the data. For instance, 
a cell that fires a single spike every 20 msec will have the same mean firing 
rate (50 Hz) as a cell that fires a pair of spikes every 40 msec. Clearly, the 
postsynaptic outcome of these two patterns would be very different. Hence, 
the need arises to explore the finer details of stimulus-induced temporal 
activity patterns. 

Temporal patterns of neuronal activity such as those described above 
are derived from extracellular records of action potentials prior to propaga- 
tion from the hilar region to the terminal region where they elicit transmitter 
release. The depolarizing peak of the action potential is larger than that of 
other ongoing extracellular events and can be reliably monitored with 
extracellular recording electrodes. However, the subthreshold fluctuations in 
membrane potential preceding the onset of an action potential are not 
reliably measured with extracellular recording. The latter is of no conse- 
quence to the measure of mean firing rates or other statistical measures; 
however, it is a confounding problem when attempting to reconstruct the 
underlying dynamics of the system from the data using nonlinear dynamical 
theory. 

Reconstruction of the underlying dynamics typically proceeds by 
sampling a subset of the data at fixed intervals in time and is justified by 
the application of Takens' theorem. (19~ Takens' theorem, paraphrased, 
states that the topological representation of the system can be equivalently 
reconstructed using one variable of the system with varied sampling inter- 
vals, e.g., (X~(t), Xl(t + ~), Xl(t + 2z) ..... X l ( t  + nr)) or using the n variables 
of the system, e.g., (Xl(t), X2(t), X3(t), . . . ,  Xn(l)). In essence, the motion of 
a single variable of a complex system reflects the dynamics of the entire 
system. This subset of the data, when graphically depicted, is called a 
Poincar6 section. This theorem is not directly applicable to extracellular 
records of interspike intervals, which are values that occur at nonfixed 
intervals in time. Thus, it is not immediately obvious how to form the 
Poincar6 section and to reconstruct the underlying dynamics for neural 
data. As an alternative, temporal patterns of neuronal activity can be 
depicted with an interspike interval return map, a cousin to the Poincar6 
section. (18~ Two-dimensional interval return maps of such data (Fig. 1) are 
constructed by plotting the ith interval versus the (i + n)th interval, with n 
small and typically 1. (4, 17, 18) Higher-dimensional plots to reveal higher- 
order effects can also be made by plotting Ii, Ii+1, Ii§ Ii+n, but their 
discussion is beyond the scope of the present study. Although such graphs 
do not follow the exact formalism of Takens' theorem, they follow the spirit 
in reaching toward a graphical representation of the temporal dynamics. 

The salient features of the visual cortical neuron return maps generated 
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with repetitive presentations of a bar of light at a fixed period (Fig. 1) 
include: (1) an extended range of interspike intervals at rational multiples 
of the driving period, (2) asymmetries about the line I~=I~+1, and 
(3) repeated, perhaps fractal, structures at different orders of magnitude 
(rarely found). Furthermore, if the visual stimulus period is systematically 
varied, the interspike intervals undergo period-adding bifurcations. These 
results have been used to support the idea that the single neuron operates 
as an element of an interactive deterministic population. (ts) If this suppo- 
sition is correct, then the range of activity of the neuron should be 
constrained by the theory of dynamical systems. The remainder of this 
paper considers the structure and nature of the return map generated from 
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Fig, 1. Data from cat primary visual cortex. Methods were as in Siegel, us) The interspike 
intervals are shown as (A) an interspike interval histogram and (B) a return map. The inset 
of (B) shows the fine structure of the return map. Note the extended interspike intervals and 
the asymmetries about the l ine Ii+1 = Ii- 
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two model systems and compares and contrasts them to those derived from 
recordings of visual cortical neurons. 

2. R E S U L T S  

2.1. I n t e g r a t e - a n d - F i r e  M o d e l s  

Periodic sensory input results in complex temporal patterns of action 
potentials in cat visual cortex, (18) somatosensory cortex, (H) and the 
auditory nerve. ~16) Gerstein and Mandelbrot ~3/have modeled the activation 
of a neuron by synaptic input as a random walk of the membrane potential 
to a threshold. At the threshold, the action potential occurs. This model is 
given as 

Vm(t + 6t) = V~(t)  + q(t) + ~(t) 3t (1) 

where Vm(t) is the membrane potential of a cell, ~(t) is the sum of 
excitatory and inhibitory synaptic inputs, r/(t) is uniformly distributed 
noise on the range +_ N, and fit is the time step. This equation is also called 
an integrate-and-fire model and has been studied in the absence of noise 
and with noiseJ 5' 9. lO) The equation is iterated until Vm(t) is greater than 
some threshold value VT, at which time t* an action potential event is 
deemed to occur, and Vm(t*)=O. 

If ~(t) is a constant A and ~/(t)=0, then the interspike intervals 
Ii = t*+ 1 - t* converge to a constant value of Vr /A .  The return map of this 
would be a single point, as would the Poincar6 section of the value 
Vm(T*).  If the random walk term is a small value, then the Ii are Poisson 
distributed (Fig. 2B), as shown by Gerstein and Mandelbrot. ~3) A return 
map of the interspike intervals reveals an unstructured distribution of 
points (Fig. 2B). 

If the synaptic input is a sine wave, s~(t) = A sin(cot), the firing pattern 
reaches a steady state, ~9~ so that spiking occurs at regular intervals in phase 
with the driving period. In the density histogram (Fig. 2C) and the return 
map (Fig. 2D, arrow), these steady states are reflected by a high density of 
points at integer multiples of the stimulus period. The return map becomes 
much more interesting in the presence of the random walk; the interspike 
interval pairs distribute more diffusely and new interspike interval pairs 
appear. When ~/(t)= 0.5 with the same sinusoidal driving force, interspike 
intervals are distributed across a broader range, as illustrated in the multi- 
ple point clusters of the return map (Fig. 2F) and the multiple peaks in the 
density histograms (Fig. 2E). The extended range of interspike intervals 
and the geometric decay of peaks in the density histogram are both 
observed in periodically driven cortical neurons (Fig. 1). Note that the 
model return map (Fig. 2F) is not absolutely symmetric about the Ii = Ii+ 1 
axis. There are complementary point clusters on either side of the dashed 
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line; however, within each cluster there is some asymmetry. Thus, adding 
a random walk can introduce (or reveal) asymmetries in interspike interval 
distributions or point clusters observed in return maps of the periodically 
driven integrate-and-fire model. These results suggest that a significant 
portion of the temporal patterns recorded in situ are explicable in terms of 
a simple spiking mechanism with periodic input and noise. 

We next consider the return maps obtained with a chaotic modulation 
of the function ~(t). The use of the chaotic function is motivated by 
experimental findings in which phase plots of the instantaneous firing rate 
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Fig. 2. Integrate-and-fire model. (A, C, E) The interspike interval density histograms and (B, 
D, F) return maps for the integrate-and-fire model with (A, B) a random walk to threshold 
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of visual neurons have a similarity to the phase plots obtained from the 
Duffing or Lorentz equation (Siegel, unpublished data). The chaotic attrac- 
tor is given by the Duffing equation y"+ cy'+ y3 = b  cos(t), with b- -12  
and c -- 0.1. In general the Poincar6 section of the Duffing equation is taken 
by plotting y against y' at time t=2nrc, n=  1,2 ..... or y(t) versus 
y( t+At) .  ~2) This typical Poincar6 section is characterized as a strange 
attractor with a repeating or fractal structure at multiple levels of 
magnitude. 

By setting the stimulus input equal to one variable from the Duffing 
equation [e.g., c~(t)= y(t)]  and iterating Eq. (1), continuous values from 
the Duffing equation are transformed into interspike intervals. The return 
maps generated with the Duffing driven "integrate-and-fire model" are not 
at all similar in shape to the original Poincar6 section. The highly folded 
continuous Poincar6 section of the original function is fragmented into a 
highly complex return map (Fig. 3B). The return map is still fractal, but 
the relatively simple structure of the original strange attractor is exploded 
into many smaller pieces. The presence of a random walk t/(t) va 0 blurs the 
fine fractal structure (Fig. 3B and 3D). 
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Fig. 3. Duffing driven integrate-and-fire model with and without a random walk to 
threshold. (A, B) Marked asymmetries in the interspike interval distribution were reflected in 
(A) the density histogram and (B) the return map. Not  the asymmetry about Ii+ 1 - li and the 
focal asymmetries in the clusters of interspike interval pairs. (C, D)  The focal asymmetries 
were less apparent when a random walk to threshold was utilized. 
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A striking feature of the return map generated with a Duffing driven 
integrate-and-fire model is the asymmetry about the I i=  Ii+ 1 line. Note in 
Figs. 3B and 3D that the point clusters are not simply mirror images of 
their neighbors on either side of the I i=  Ii+ ~ line. Furthermore, there are 
local asymmetries in the distribution of points within a given cluster of the 
return map or peak of the density histogram (Figs. 3A and 3B). Local 
asymmetries (possibly attractors) such these have not been described and 
heretofore have not been noted in the literature. Finally, the dimension of 
the spiking Duffing system is apparently greater than 2 because the return 
map has segments that cross each other. In contrast, the dimension of the 
original Duffing equation is an irrational number less than 2. The apparent 
increase in dimension with the spiking system is important to note, as prior 
studies have attempted to compute the dimension of the underlying 
dynamics with interspike interval data. (15) The current results suggest that 
such computations may be artificially inflated or erroneous, in agreement 
with Preissl eta/., (~4) and caution against the use of quantities such as 
dimension to solely define the characteristics of a dynamical neural system. 

These results taken together suggest that the return maps resulting 
from periodic flash-evoked activity in sensory cortical neurons may reflect 
a quasiperiodic but ordered synaptic input. Recall that c~(t) represents the 
sum synaptic input to the model neuron. The input to the single neuron 
may indeed be chaotic, but the input need not be so formally constrained. 
For instance, complex patterns in cortical sensory neurons may result from 
intrinsic properties of the network in which it participates. Thus we see that 
with a relatively simple driving force (e.g., sine wave), the return map of the 
model output is similar to the Poincar6 section of the driving function, 
while with more complex input there is a divergence between the shape of 
the two. 

2.2. S ing le -Neuron Simulat ion 

One might argue that the integrate-and-fire model is not a reasonable 
encapsulation of the single neuron, which has multiple ionic conductances 
that are nonlinear functions of time and voltage. We therefore have begun 
an investigation into the effect of periodic input upon the patterns of 
activity of a single neuron modeled using a set of coupled nonlinear 
differential equations. The Hodgkin-Huxley (HH) (7) equations that model 
the squid giant axon have been studied in detail and are accepted as the 
base representation of the ionic currents of neurons and are used as the 
starting point of this investigation. 

A number of dynamical studies examining the behavior of the 
sinusoidally driven HH equations have found that the sinusoidal rhythm 
tends to entrain the sodium spikes so that they occur at a fixed phase of 
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and quasiperiodic activity with the sinusoidally driven 
Hodgkin-Huxley equations. (A, D) Membrane potentials, (B, E) return maps, and (C, F) 
interspike interval density histograms for two different cosine driving periods at an amplitude 
of 1.5 ~A/cm 3. The driving period for (A-C) is 18.47 msec and that for (D-F)  is 19.03 msec. 
(A) With a driving period of 18.47 msec, action potentials occur in phase (phase-locked) with 
the driving stimulus, generating a repetitive 3:1 (stimulus cycle :action potential) spiking pat- 
tern. B) During phase-locked activity, interspike intervals vary little, generating a return map 
with a single cluster of values around the point 56, 56; and (C) a high density of interspike 
intervals at three times the driving period. (D) When the driving period was 19.03, the pattern 
of action potentials was quasiperiodic or unstable. (E) During quasiperiodic activity, the 
range of interspike intervals was extended from a single multiple of the driving period (3) to 
include several integer multiples of the driving period (3, 4, 5, 6,..., 16). The extended range is 
reflected in both (E) the return map and (F) the density histogram. In addition, interspike 
interval pairs for the return map were unevenly distributed about the line li+ I = I i .  Both 
simulations were run for 50 sec. The same 12 sec of each simulation is shown. 
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the stimulus period. (6'8' ~2) Such phase locking to the stimulus period is 
observed in the present study (Fig. 4A) for most of the amplitudes and 
frequencies explored. Consequently, the interspike intervals observed in a 
50-sec simulation were clustered about a single value which was some 
multiple of the stimulus period (Figs. 4B and 4C). Such singular or simple 
interspike interval patterns are not observed in situ with periodic forcing. 

Complex or irregular temporal spiking sequences are observed 
between phase-locking regions of the frequency-amplitude parameter space 
(Fig. 4D). (8" 12~ During the course of such complex temporal patterns, inter- 
spike intervals are no longer clustered about a single value, but are dis- 
tributed across several values all of which are exact or near integer multi- 
ples of the stimulus period (Figs. 4E and 4F). The extended distribution of 
interspike intervals observed in these unstable regions more closely resem- 
bles that of sensory neurons driven in situ. Furthermore, there are some 
asymmetries in the point distributions (clusters) about the I i=I~+l line 
(Fig. 4E). However, for any given multiple of the period, the distribution 
of interspike intervals was not as large as that observed in periodically 
driven sensory neurons of the integrate-and-fire model with a random walk 
to threshold. The latter is readily appreciated by comparing the width of 
individual point clusters of the HH model (Fig. 4E) and cortical neuron 
(Fig. 1) return maps. Furthermore, the interspike interval density 
histograms (Fig. 4F) are not characterized by an exponential decay with 
higher multiples of the driving period as is typical of the primary sensory 
cortical neurons, ~18) the random walk, integrate-and-fire model (Fig. 2C), 
or the periodically-driven noisy FitzHugh-Nagumo equations. (2~ 
However, the transient nature and rare incidence of aperiodic activity 
for the HH equations under these conditions precludes a quantitative 
comparison. 

3. D I S C U S S I O N  

The integrate-and-fire model has been explored as a plausible model of 
the periodically driven sensory cortical neuron. It is capable of simulating 
spontaneous activity. The sinusoidally forced integrate-and-fire model 
generates a restricted distribution of interspike intervals that cluster about 
one or more integer multiples of the stimulus period. When a random walk 
is introduced, this range is extended to include new interspike intervals at 
integer multiples of the stimulus period. Introduction of the random walk 
also leads the clusters of interspike interval pairs in the return map to be 
more diffuse and the width of individual peaks in the density histogram to 
increase, reflecting deviations around multiples of the driving period. 
Rettlrn maps of the sinusoidally driven integrate-and-fire model have little 
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asymmetry about the line I i = I i + l  or asymmetry within point clusters 
about rational multiples of the driving period. If a more complex, chaotic, 
function is used to drive the integrate-and-fire model, marked asymmetries 
appear along the line I i=  Ii+ 1 and within individual point clusters of the 
corresponding return map. Thus, some of the salient features observed in 
periodically driven sensory cortical neurons are reproduced with the 
sinusoidally driven integrate-and-fire model. However, the subtle asym- 
metries in distributions of the data are not realized without using a more 
complex (in this case chaotic) driving force. Thus, the integrate-and-fire 
model appears to emulate aspects of the neural data only when the synaptic 
input has nonlinear characteristics. 

By design, the integrate-and-fire model described above has a non- 
linearity in its input. It is also possible that the putative nonlinearities seen 
in the neural data are a result of intrinsic nonlinearities of the neuron. To 
test this possibility, the HH equations were stimulated with a sinusoidal 
input. Under these conditions, the HH differential equations reproduce 
some of the features observed in the interspike interval return maps from 
periodically driven sensory cortical neurons. Like the sinusoidally driven 
integrate-and-fire model with a random walk, the HH equations yield an 
extended range of interspike intervals all of which are close integer multi- 
ples of the driving period. In addition, sinusoidally driven HH equations 
can yield asymmetries in the density and clustering of interspike interval 
pairs about the line I i= Ii§ These complex interspike interval distribu- 
tions and corresponding return maps are only generated within a restricted 
region of the frequency~amplitude parameter space for the sinusoidally 
driven HH equations. This restricted region is characterized by unstable 
phase locking to the driving period. Thus, although the intrinsic non- 
linearities of the HH equations can give rise to some of the properties of 
the neural data, they seem to be lacking as a complete model. 

There are other factors in vivo which may account for the properties 
of the data which are not modeled by the HH equations. The effects of 
noise on the HH frequency-amplitude parameter space have not been 
explored. Adding pseudorandom membrane fluctuations to the HH equa- 
tions might provide a better model of the complex temporal patterns seen 
in situ as is known in squid axon. (6) In addition, shifting the HH equations 
into a oscillating state prior to coincident periodic driving broadens the 
regions of quasiperiodic activity. (8) Presumably, these manipulations 
broaden the regions of quasiperiodic activity yielding return maps with 
extended interspike interval distributions and asymmetries akin to those 
observed in situ. Thus, there are two possible mechanisms that may under- 
lie the fingerprint structure of interspike interval return maps observed 
in situ. However, it is difficult to identify the physiological correlates for 
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such noise or oscillations. We are investigating a third possibility, that the 
extended range and prominent asymmetries of the interspike interval return 
maps are a consequence of interactions within a deterministic populations 
of neurons--wi thout  the imposition of an external noise source or intrinsic 
oscillatory properties. (is) We can mimic many of these properties of in situ 

data with a simple network of interconnected H H  equations. Further eluci- 
dation of the fine structure awaits the study of the actual ionic processes 
and the functional (and synaptic) architecture of sensory cortical neurons 
in situ and perhaps the discovery of some general principles which underlie 
the temporal  dynamics of neurons in vivo. 

One might ask whether the fingerprint distribution of interspike inter- 
val return maps is pertinent to understanding sensory cortical information 
processing. Clearly, the local regions of asymmetry are not the same from 
neuron to neuron, whereas other features, such as the extended interspike 
interval range, are somewhat conserved for the same parameters. We suggest 
that these fingerprint distributions are reflecting some stable property or 
state of the network of neurons participating in the flash (or sensory) 
evoked activity of cortical neurons. In support  of this hypothesis, the asym- 
metries are conserved with repetitive presentations of the periodic flash 
stimulus. Furthermore, preliminary cortical data suggest that the details of 
the interspike interval return maps change with stimulus parameters (e.g., 
bar orientation in primary visual cortex of cat; Siegel, unpublished results). 
Similarly, changes in temporal  patterns of interspike intervals have been 
found when varying visual stimuli (Walsh basis sets) using quite different 
analytical approaches in inferior temporal cortex (13) as well as other sub- 
cortical and cortical regions. These studies suggest that neurons do encode 
sensory qualia in the temporal  patterns of neurons. However, it remains an 
open and critical question whether the nervous system can actually use and 
exploit these temporal patterns to sense and explore the surrounding 
environment. 
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